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THE INFLUENCE OF PREBUCKLING DEFORMATIONS AND STRESSES
ON THE BUCKLING OF PERFECT CYLINDERS

By Manuel Stein
SUMMARY

Large-deflection theory is used to compute buckling loads of simply sup-
ported initially perfect cylinders under axial compression, external pressure,
and combinations of axial compression and internal or external pressure. Impor-
tant results are obtained by taking into account prebuckling deformations and
stresses induced by edge support. For example, the presence of these deforma-
tions and stresses can reduce the axial-compression buckling load of an unpres-
surized perfect cylinder to 50 percent of the classical value.

INTRODUCTION

Classical theory and experiment are in good agreement for buckling of cir-
cular cylindrical shells under uniform external lateral pressure. (See ref. 1.)
For external hydrostatic pressure there is similar agreement between experiment
and theory except for the lower range of curvature parameter (Lz/ft < lOO), where
L, r, and t are the cylinder length, radius, and thickness, respectively. For
axial compression, however, severe disagreement exists; experiments have shown
that the actual buckling stress for high values of r/t is from 15 to 50 percent
of that predicted by classical theory. (See ref. 2.) The disagreement found in
hydrostatic pressure tests at low values of the curvature parameter is probably
also due to the inability of classical theory to account for axial compression.
(See ref. 1.)

Convincing arguments have been made that the occurreince of buckling stresses
lower than expected for axial compression is due in part to initial imperfections.
For example, the results of large-deflection analysis (ref. 3) have indicated
that small initial imperfections can lead to large reductions in the buckling
load. However, another potential reason for this disagreement between classical
theory and experiment has, until recently, been unexplored. This potential reason
is the inconsistent assumption made in classical theory with regard to prebuckling
and buckling edge conditions. 1In classical theory the prebuckling deflection and
stress components are assumed to be either constant or zero. Thus, 1t is implied
that the edges of the shell are free until buckling occurs; however, during the
buckling process the edges are assumed to be radially restrained (simply sup-
ported or clamped).



The effect of one deviation from the classical edge conditions has already
been investigated (see refs. 4 and 5) for buckling in axial compression by use of
linear equations. The edges of the shell were allowed to remain free during the
buckling process and the resulting buckling load was less than half the classical
load. Although this result demonstrates effectively the importance of the edge
conditions, in practice the occurrence of free edges is rare; the edges of the
shell are usually attached to a ring or pressed against the platens of a testing
machine. The approach of references 4 and 5 is consistent in the sense that pre-
buckling and buckling edge conditions are the same. However, it seems more real-
istic to take the opposite though still consistent approach, wherein from the
inception of loading through buckling the edges of the cylinder are radially
restrained. Moreover, it is apparent that such restraint must lead to nonuniform
prebuckling deflections and stresses throughout the cylinder, the importance of
which should be determined. This approach to cylinder buckling analysis has been
adopted in the present investigation.

A cylinder without initial imperfections is considered, and large-deflection
theory is used to determine the deformations and stresses prior to buckling and to
determine the buckling equation. Results are obtained for buckling of simply sup-
ported cylinders under axial compression, external pressure, and combinations of
axlal compression and internal or external pressure. Some results of this investi-
gation were presented in reference 6. The present paper includes the results given
in reference 6, some additional results, and a complete discussion of the analysis.

SYMBOLS
prL2
Cp pressure stress coefficient, >
BtD
D plate stiffness,
12(1 - 2)
E Young's modulus
. . PLE
ky axial stress coefficient, ==
Dx@
L length .of cylinder
M number of stations in half length

Nx:Ny:ny in-plane stress resultants

n number of waves in circumferential direction
P applied axial in-plane compressive force per unit length
P pressure

radius of cylinder



U,V,W
U, vV, w
uA,wA

uB,vB,wB

Xy

€xo ey: 7xy
7

When the subscripts
ferentiation of the principal symbol with respect to x and Y.

thickness of cylinder wall

functions of x which appear in the buckling displacements ug, Vg,
and wpg, respectively

displacements in the x-, y~-, and radial directions, respectively

prebuckling displacements (functions of x)
buckling displacements (functions of x and )

axial and circumferential directions

e 2
curvature parameter, = 1 -npn
2t
2 +
dx2dy2  oyh

in-plane strains
Poisson's ratio

x and y follow a comma, they indicate partial dif-
Primes indicate

total derivatives with respect to x.

ANALYSIS

In the large-deflection Donnell theory, the basic differential equations of
equilibrium for a cylinder are:

\
NX)X * NX.Y:Y =0

Ny,y + Nxy,x =0 g (1)

N
y -
DV + < - (wa,xx + NyW yy + 2nyw’xy) =p

According to Hooke's law,

J
- ~N
Nx = l—-—2(€x + l.ley)
L - M
Et
Ny = ———(ey + pex > (2)
Yy u2( ¥ )
Et
Nowy = —20
XY T o1 e
J



The nonlinear strain-displacement relations are:
1
ex=u,x +§W’x

(3)

+

&y = V,y

Hg
+
1=
=
N
NS

= +
7xy Ly * V,x W:XW;YJ

Equations (1) to (3) provide a complete set of nine equations in the nine unknown
stress resultants, strains, and displacements which, together with boundary con-
ditions, specify the problem. The ends of the cylinder are considered to satisfy
the following simple support boundary conditions from the initial application of
load:

Zero (radial) deflection:

“(Ly) =0 (1a)
Zero moment:
W,xx(%:Y) =0 (l*b)
Constant (axial) displacement:
u,y(tg,y) =0 (ke)
Zero shear stress:
v +£ =0 . ()-I-d)
’X _2)y )

It is to be expected that prebuckling deformations are axisymmetric; that
is, they are functions only of x and may be obtained directly from equations (1)
to (3). If in equations (1) the deformations are functions of x only, then:

Nxa' =0
Nyyn' =0 (5)
Dwp'tl'' + % NyA _ NXAVA" =7

where the subscript A denotes prebuckling values, and the primes denote dif-
ferentiation with respect to x. The first of equations (5) requires that the
prebuckling Nys be constant; thus Nygp 1s set equal to the negative of the
compressive load intensity P. The second of equations (5) together with the
boundary conditions (4) require that Nyyp =0 and vp = 0. Equations (2) and
equations (3), if deformations are considered .as functions only of x, identify



Et
Nya =5 Wy - HP

The equation determining the prebuckling deflection is obtained from equations (5)
as:

Et 6
Dwal'''! + Pwa't 4 w p+EP
1‘2 r ()

Equation. (6) has the following solution that satisfies the boundary conditions (4)

2
wp = Aj sin a1x sinh aoX + A2 cos aqX cosh apx + rﬁ(p + % P) (7)
where
al =
2
o =@ [4\BZ _ PL
2 2nll 2 pg2
a L anl L anLl
2 _ 2) - h 2" _ o sin 21Y gipp 222
Ay = L2‘("9 + B P) (a2 )T e °1% 2 2
Et r a1 L ansL aiL anl
s D 2] R 2 <1 o 4P
2ala2 (s:.n = sinh —>— + cos = cosh ~>— )
a L a,L aL a,L
2 2\ s 1 : 2 2
Ap = - rg(P LB P) (a2 - ap )sn.n - sinh 5 + 28‘18'2 cos > cosh -
Et r a1l arL aL anrL
2a a5 sin® o sinh? =2 + cos? S cosh2 =2
1 2 2 2 2

With wp known, the axisymmetric prebuckling axial displacement wu, can be

found from equations (2) and (3). A solution to the axisymmetric problem was
first obtained in reference 7 and is reported in reference 8.

To the prebuckling displacements are added the infinitesimal nonaxisymmetric
displacements wup, Vg, and wp that occur at buckling:

u = uy(x) + uB(x,y)
v = vg(%,¥) (8)
w = wp(x) + wp(x,y)



The displacements up, Vg, and wy must also satisfy simple-support boundary
conditions consistent with the axisymmetric prebuckling solution. The following
buckling equations may now be obtained by substituting equations (8) into equa-
tions (1) to (3), subtracting out identities (5) relating subscript A deforma-
tions, and then neglecting terms nonlinear with respect to subscript B
deformations:

p ' l-p
+ v + =W + (W, W + =
uB,xx 5 uB,yy ) B, Xy r B,X ( A B,x)’x 5 Wa WB,yy

0

l+p 1-p 1 1-p e 1+p
2 UB,xy * VB,yy + 5 VB,xx + T "B,y + 5 YA WB,y + 5 YA YB,xy < O? (9)

1 Et =
DVMW:B + = NyB + PwB,XX + (p_P -5 WA)WB,y'y - WA”NXB =0 )
where
~ —-
Et ¥B
N = + ! + + —
Bt [ ¥B \]
Ny = vy +—+p.<u +WAWBX)
y l _ “2 L )y r B,X J
The conditions of continuity around the cylinder are satisfied if
)
ug = U(x)sin %
vy = V(x)cos rﬂ (10)
= in Y
wg = W(x)sin rJ

where n, the number of waves around the cylinder, is an integer. FEquations (9)
may now be converted to the following ordinary differential equations relating U,
V, and W which have complicated variable coefficlents and which are not solved
here but are included only for the sake of completeness:

2 2 T
vy _ 1 - n _l+pun B ' 1l - n _
R v 2ZBBy By s (W) - ==t Bt =0
l+pn.., n® 1l - ' n 1 - n 1l + n
s~ U -Fv+—li2 v +r—2W+—2—E;"’A"W+—2E;VA'W'=O (11)
2 4 - 2
lelll_en W'+ B ;—_ re o _Et n - T -
< —r2 —W) +1‘ NyB + PW upP E W ——r2 W wAlexB —0)



where

Fon = —BE |y "y (_ n 1 )

NxB_l_uef + oW W+ rV+rW

N = (. B + = + (' 'l)

vB N > - A - W plU' + wy'W l
- b L

Instead of solving these equations directly, an equivalent energy method was
used. The potential energy I of the loaded cylinder is

L/2 enr
2 42
€x €

Et b/ﬁ 1 -p g)
I = + 2ueye, + —— vy dy dx
2L - w2) J_r2 Jo Y *vooo2 xy

o L/2 enr 5 . 5
+ &= - 12
2 u/iL/g b/; [%,xx T yyT A ey + 2(1 “)W,xy;]dy ax  (12)

When the first variation of this potential energy expression, in which equa-
tions (3) are used for the definition of the strains, is taken with respect to u,
v, and w and set equal to zero, eguations (1) in terms of wu, v, and w result.

Noting that -P = I_EE_E uA,x + % WA'2 + % wA>, equations (5) for the strains in
- u
terms of the wu, v, and w of equations (8) are
€ =—<l_u2>L_Ew + u + Wa'W +£w g
X Et ™ A B,X A B,x o) B,X
e =X w +v +L1w +Ly 2 (13)
Y =r A B,y r B 2 B,y
— T
7xy T VB,x * UB,y *¥a B,y * WB:XWB:Y J

When equations (13) are used for the definition of the strains in the energy
expression (12), y dependence can be eliminated if upon substitution from equa~
tions (10) the y integration is performed. It is also convenient at this point
to drop all terms of higher than second degree in U, V, and W (so that the
resulting expression corresponds to eqs. (11)). Thus, the potential-energy func-
tion which is to be minimized is



L/2 2
[ = —Bbar f 2[(_1 - “2)% + % WA] + (U' + wA'W')2 - [(l - “2)_E_E:’t_

2 2 2
+ By 2 ot ey 2 2 Ly ony\© o, 0 e
I‘A. T A I‘2A Tr Tr I‘B A

1 n H 2 1~ ufs I n 2
1 IAWA - - — — ' o - !
+2“(U +WAW)<I‘W rv>+rwAw T3 N S
L/2 L 2 2
. Dgr b/ﬂ QWA"E s s w2 gy 25 Wt o+ 2(1 - )R wrlax (14)
-L/2 o T v

When the derivatives occurring in the expression for Il are replaced by
finite differences and the integrations are replaced by finite sums, the minimiza-~
tlion process leads directly to a set of simuitaneous linear algebraic equations
for the U, V, and W values at discrete points along the length of the cylinder.
The stations along the length of the cylinder are taken to be equally spaced and
numbered from m = O at the center to m =M at the end. There are also sta-
tions corresponding to m = -1 and m =M+ 1. The following difference approxi-
mations for the first and second derivatives are used:

(gg) _Ima - Iy
m+

<d2f> gy - 2y o fp g

5] =

dx=/p

where m indicates the station and € is the distance between stations. Inte-
grals are approximated by finite sums according to the trapezoidal rule. The
quantities U and W are evaluated at the full stations; V is evaluated at the
half stations. When these replacements are carried out, equation (14) becomes



2 U. - U W - W
I = Etnre }: 5 (1'_ ue)ll + B v, + m+1 + WA m+1 m
1 - pl Et r 1 € +1 €
m=0 m+ 3 m+s
2
W, - W, 2(W. + W
- =1 I S Y m+l m M y oy B mtl m
nr2 3
2 W, + W\ U 6]
2 o) wm+l + wm n n2 m+1 m m+l m
+—§WA l+ o= —;V 1 +—3WA 1 S + 2u -
m+= =
r m+_2. ) r m+2
2
Wil - W\ Yme1 * W " m+l ~ Ym
+ W -~V 1]+t = va
A1 € 2r m+=] T “m+il €
m+ = o >
A -V
Btnre nt+s m~% n
-5 + 5 +=Up +w = W
2(l+p.) 2[: mM)] € m Ap r 'O
3 W o0+ W 4\° b
2 +1 - +t Wyl 2
1-= + . o m + B
+ Drre Z [ (amo amM)} 2wy < — 3 W
m=0
n2 wm+l - oWy + W lﬂ W+l — W :
- 2u By > + 2Drre(l - u) __E— (15)
r €
m—O
where Opo and SmM are Kronecker deltas which have the value zero if the sub-

scripts differ in value or have the value unity if the subscripts are the same.

The deflections are assumed to be symmetric about the center of the cylinder;
therefore, at x = 0 the geometric conditions are U =V' =W' =0 or

Voifz = Ve (16)

At x = % = Me, the geometric conditions that correspond to equations (4) are

U=V'=W=0 or



v =
2
Wy =20

According to the minimum potential-energy method for this case, the fol-~
lowing equations subject to the foregoing conditions (egs. (16) and (17)) must
be satisfied

~
g_g;=o (m=1,2, ... M-1)
ol
-0 m=0,1, ... M-1
BV l ( 2y - 2 ) (18)
m+=
2
el
A _o m=0,1, . « ., M=o1l, M+1
awm ( P A ] > ) )J

The (M + 1) equation of the last set provides for automatic satisfaction of the
natural boundary condition: zero moment at Xx = %- Thus,
Wil = W1

and Wyyy can be eliminated as one of the unknowns to leave 3M - 1 unknowns

Uy, U2, o . ey UM_l; Vl/E’ V5/2, o e ey VM_%; WO, Wi, -« « o, WM-l

The equations obtained are homogeneous inr the 3M - 1 unknowns, so that either
all the unknowns are zero or the following determinant of the matrix of coeffi-
cients is zero

Ayg : Ao : Az
_____ S
Aoy 1 App ! Ay 1 =0 (19)
| !
Az 1 Az 1 Ass

This determinant is symmetric about the principal diagonal (A3, App, and A55 are
symmetric submatrices; Apy, Az}, and Azp are the transposes of A)p, Al3, and Aps,

respectively), and the submatrices have the following sets of numbers which are
of order indicated:

10
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The argument of wp and its derivatives in the previous expressions is in
the dimensionless form x/L (instead of x).

When the number of waves around the cylinder nL/nr, the number of stations
in a half length M, the cylinder of interest Z, the internal pressure prLE/Dﬂg,
and the Poisson's ratio p for the material (u = 1/3 in the present calculation)
are chosen, the requirement that the determinant vanishes provides the desired

2

eigenvalue (EL—) for buckling. The correct choices of n and M are discussed
Dt

in the following section.

LIMITATIONS OF THE CALCULATTIONS

If accurate results are to be obtained, the value of M must be large enough
to provide about four stations for each prebuckling (inward or outward) wrinkle.
In the present calculation at least four and usually five or more stations were
provided per wrinkle. For Z > 1,000, this criterion led to equations involving
determinants that were too large for economical application of the IBM 7090 com-~
puting machine used. Hence, calculations have been limited to Z S 1,000. For
the presented results: M =17 for Z €200, M =34 for Z =500, and M = 50
for Z = 1,000.

The proper value of n is the integral value which yields the lowest

buckling load, with the physical restriction that n cannot be less than 2

(since n =1 is simple translation and n =0 is an axisymmetric form). Little
accuracy is lost, however, if n 1is considered to be continuously variable for
n> 2. It was found that n = 2 gave the condition for instability for almost
every case except for the range of higher external pressures. The differential
equations of equilibrium (egs. (1)) are accurate for the case n = 2 only if at
least three wrinkles are present in every part of a cylinder length equal to the

1k



radius so that the deformations are extensional. (See ref. 9.) For this reason
small values of the curvature parameter (Z < 50) could not be treated for axial
compression and for combinations of axial compression and internal pressure.

RESULTS

In figures 1 to 4 interaction curves are presented for values of the curva-
ture parameter Z = 50, 100, 200, and 500. Fach point on the curve presents a
combination of axial compression and lateral pressure that causes buckling. When
the curves depend on r/t, they correspond to n = 2; elsewhere, the results were
given by n> 2 with n assumed continuously variable. At the end points to
the left the curves give the buckling pressures for cylinders under external
lateral pressure aloné. The hydrostatic pressure for buckling is given by the
point on the curve marked by a cross. When the pressure is zero, note that the
axial buckling stress is 50 percent or less of the classical value. With internal
pressure present, the axial stress required for buckling increases until it
approaches the classical value. Stress coefficients for external lateral pres-
sure alone, external hydrostatic pressure alone, and axial compression alone are
presented in figures 5, 6, and 7, respectively, for a wide range of curvature
parameter Z (within the limitations specified in the previous section).

DISCUSSION

Experimental results are available,in reference 10 for cylinders with com-
binations of internal pressure and axial compression and with curvature parameters
about equal to those presented in figures 1 and 4. The experimentally obtained
buckling stress coefficients are plotted along with the theoretical curves in
figures 1 and 4. A comparison of the results shows that, although the experi-
mental cylinders were ring supported and the theory was for simply supported
cylinders, there is much better quantitative agreement of experiment with present
theory than with classical theory. The evident disagreement in the shapes of the
theoretical and experimental interaction curves has not been explained.

It should be noted that the boundary conditions on inplane buckllng displace-

corresponding boundary conditions of the classical theory

ments of the present theory uB,y<+L y) = VB,x<i%’y) = 0 are different from the

uB,x<i%,y> = TB¢%§y> = 0. In classical theory essentially the same results are

obtained for both sets of inplane boundary conditions for cylinders in axial com-
pression and internal pressure. Recently Fischer obtalned results on essentially
the same basis as that of the present paper except that he satisfied the classical
inplane conditions. (See ref. 11.) He obtained markedly different results -

much smaller changes from the classical theory - which indicates that the buckling
load of a cylinder in axial compression is quite sensitive to inplane boundary
conditions.

15
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Figure 1l.- Theoretical and experimental results for buckling of a cylinder of low Z under com-
binations of axial compression and internal pressure. Crosses indicate hydrostatic external
pressure for buckling.
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Figure 2.- Theoretical results for buckling of a cylinder of 7 = 100 under combinations of axial
compression and internal pressure. Crosses indicate hydrostatic external pressure for buckling.
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In figure 5 the end points of the 103 -
curves of figures 1 to 4, as well as

Present theory

some additional calculated results for =7 Classical theory

[o] Experiment (See ref I}

external lateral pressure, are plotted
against the curvature parameter 7,
together with the corresponding classi-
cal curve and with experimental data.
Comparison of the theoretical results
shows that the prebuckling stresses and
deflections and the different boundary
conditions serve to stiffen the cylin-
ders by about 25 percent at higher val-
ues of Z. In the range of lower 2
this stiffening effect disappears. Clas-
slcal theory agrees better with experi-
ment than the present theory. 10

| 1 |
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Figure 5.- Theoretical and experimental results

In flg € 6 results of the Present for buckling of cylinders under lateral

theory for external hydrostatic pressure pressure.

are plotted against the curvature param-

eter Z, together with the corresponding 10

classical curve and with experiment. ( .
Comparison of the theoretical results T Claeartal theory

o Experiment (See ref 1)

shows that prebuckling stresses and
deformations and the different inplane

boundary conditions serve to stiffen the 102 - e
cylinder by about 25 percent for higher -4
values of Z. In the range of lower Z & ,éﬁ?

this stiffening effect disappears and S
prebuckling stresses and deformations

serve to weaken the cylinder to about

80 percent of the classical value. Thus,
whereas the classical theory agrees with
experiment in the range of higher values

of Z and disagrees in the range of | . . L 1

lower values of Z, the present results 10 '°Z_@V(E 0 ©
. . L V4D

follow the trend of experiment and yield Figure 6.- Theoretical and experimental results

buckling pressures roughly 25 percent for buckling of cylinders under hydrostatic

high in both regions. pressure.

For axial compression of unpressurized cylinders the present results are
more than 50 percent below the classical values. (See fig. T.) Thus, the axial
buckling load is sensitive to the prebuckling deformations and stresses resulting
from restraint of the edges. The value of the buckling load from the present
theory is dependent on radius-thickness ratio, whereas in the classical theory it
is not. The dependence on radius-thickness ratio occurs when the critical wave
form is determined to have two waves in the circumferential direction, and it
can be seen from flgure 7 that the empirical curves of reference 2 - and there-
fore experimental results - exhibit stronger dependence on radius-thickness
ratio. Agreement between theoretical and empirical curves is much better with
the present theory than with classical theory, especially for low radius-
thickness ratios.
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Neither the results of the present
theory nor the results of classical
theory for buckling in axial compression
indicate that the buckle wave form is of
the diamond pattern as indicated by
buckled experimental cylinders. The
results of present theory, which specify
two waves in the circumferential direc-
tion at buckling, deviate even farther
from the experimental buckled wave form
than the results of classical theory.

103 ~

Present theory .
~=- ~— Clossical theory However, previous work has shown (see

— — Emprrical {Ref 2}

ref. 12) that the equilibrium configura-
tion of a structure corresponding to the
\ ) A | mode at buckling need not be stable
10 102 103 104 under many conditions of loading. If
2L /R the buckling mode is not stable, it
Figure T.- Theoretical and empirical results for might not necessarily resemble the final
buckling of cylinders in axial compression. shape of a buckled experimental structure.

CONCLUDING REMARKS

The present paper has focused attention on a serious shortcoming of classical
buckling theory. In the interest of avoiding complicated prebuckling deformations
and stresses, the classical approach is to relax completely the supports in the
prebuckling range and thus to assume that the prebuckling stresses are zero or
constant and that the prebuckling deformations are zero, constant, or linear.
Prebuckling deformations and stresses due to edge support have been ignored also
in studies of effects of initial imperfections. 1In every practical cylindrical
shell structure, however, some measure of radial support is present from the
beginning of loading so that, prior to buckling, complicated axisymmetric deforma-
tions and stresses are present to modify the load-shortening behavior of the cyl-
inder and to influence its buckling load. This influence is especially notable
for cylinders 1in axial compression and for short cylinders under external hydro-
static pressure, where it accounts for a large part of the disagreement between
classical theory and experiment.

Further work needed in this field includes studies of cylinders with clamped
edges and with flexible rings at the edges. In order to study the behavior of
longer cylinders (cylinders of larger Z) in axial compression, it would also be
desirable to analyze the semi-infinite cylinder. In addition, in future cylinder
studies, it would be useful to extend this work by using a more exact theory for

buckling into two circumferential waves for less than three wrinkles in the axial
direction.

Langley Research Center,

National Aeronautics.and Space Administration,
Langley Station, Hampton, Va., August 20, 1963.
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